Pharmacokinetic analysis of the chronic administration of the inert gases Xe and Ar using a physiological based model
نویسندگان
چکیده
BACKGROUND New gas therapies using inert gases such as xenon and argon are being studied, which would require chronically administered repeating doses. The pharmacokinetics of this type of administration has not been addressed in the literature. METHODS A physiologically based pharmacokinetics (PBPK) model for humans, pigs, mice, and rats has been developed to investigate the unique aspects of the chronic administration of inert gas therapies. The absorption, distribution, metabolism and excretion (ADME) models are as follows: absorption in all compartments is assumed to be perfusion limited, no metabolism of the gases occurs, and excretion is only the reverse process of absorption through the lungs and exhaled. RESULTS The model has shown that there can be a residual dose, equivalent to constant administration, for chronic repeated dosing of xenon in humans. However, this is not necessarily the case for small animals used in pre-clinical studies. CONCLUSIONS The use of standard pharmacokinetics parameters such as area under the curve would be more appropriate to assess the delivered dose of chronic gas administration than the gas concentration in the delivery system that is typically reported in the scientific literature because species and gas differences can result in very different delivered doses.
منابع مشابه
Estimation of second virial coefficients for rare gases in thermodynamic views
Using the Gaussian 2003 software and MP2/ 6–311 ++ G** method for He: He, Ne:Ne andMP2/6-31G method for Ar: Ar, Kr: Kr and HF/STO-3G method for Xe: Xe, the optimizedinteraction energies between two like atoms of rare gases (He, Ne, Ar, Kr and Xe) as a functionof the distances between the centers of two considered atoms were evaluated and the resultswere interpreted according to the Lennard – Jo...
متن کاملتاثیر مخلوط گاز He-Xe بر بهره تحریک در صفحه نمایش پلاسمایی و مقایسه آن بامخلوط گاز Ne-Xe وNe-Xe-Ar
The image in a plasma display panel is formed when a mixture of several rare gases are activated and discharged .and Xe is excited. Because of limitation as to the increase Xe gas, the luminous efficiency of PDP is lower than that of cathode ray tube (CRT). In this paper we show by numerical simulation that the excitation efficiency in He-Xe mixture is lower than that in a Ne-Xe ...
متن کاملDevelopment of Al-Ti-N Composite Coatings on Commercially Pure Ti Surface by Tungsten Inert Gas Process
The present work aims to modify surface properties of pure Ti by development of Ti-Al-N intermetallic composite coatings. In this regard, tungsten inert gas (TIG) cladding process was carried out using Al 1100 as filler rod with Ar and Ar+N2 as shielding gases. Phase and structure of the samples were investigated by X-ray diffraction (XRD) technique, optical microscopy (OM) and scanning electro...
متن کاملFundamental Properties of Inert Gas Mixtures for Plasma Display Panels
A fundamental kinetic model is used to compare the luminous efficiency of different compositions of Ne–Xe, He–Xe, and Ne–Xe–Ar mixtures in plasma display panels. A self-sustaining condition is used to estimate the breakdown electric field , accounting also for Penning ionization. The excitation frequency of Xe states that emit UV photons is calculated for applied electric field values ranging f...
متن کاملSeparation-Based Adsorption of H2 from Binary Mixtures inside Single, Double, Triple Walled Boron-Nitride Nanotubes: A Grand- Canonical Monte-Carlo Study
This study investigates the separation based on adsorption of the binary gas mixture of hydrogen withbiogas (gases: CO2, CH4, O2, N2) and inert gases (gases: He, Ne, and Ar) using single-walled ((7,7), (15,15),(29,29), (44,44), (58,58) and (73,73) SWBNNTs), double-walled ((11,11)@(15,15), (7,7)@(22,22) DWBNNTs)and triple walled ((8,8)@(11,11)@(15,15) and (7,7)@(15,15)@(22,22) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015